類似物件データの探索

本プログラムの説明

本プログラムは、『SS7』で建物を入力・設計する際に、過去に設計した物件データから類似したデータを参照するためのツールです。建物規模や構造種別、特殊形状の有無などを入力して検索すると、類似物件のサムネイルが瞬時に 表示されます。

本プログラムの実行方法

1. データ準備

①ss7data_csvlist.pyをテキストエディタなどで開き、132行目のパスをSS7物件データを保存している直上のパス 名を定義します。

dir_path = r"C:\UsrData\Ss7Data\AI_assign"

②ss7data_csvlist.pyを実行します。この作業は、検索する物件データを更新するとき行います。

例) C:\example\srcにソースコードがある場合 cd C:\example\src python ss7data_csvlist.py

同フォルダ内に「SS7データー覧.csv」が出力されます。

2. プログラム実行準備

similar_search.pyをテキストエディタなどで開き、18行目のパス設定を①で作成したCSVファイルを定義します。 188行目のパラメータおよび195行目のサムネイルの表示数を適宜調整します。

```
df = pd.read_csv(r"C:\UsrData\Ss7Data\AI_assign\SS7データ一覧.csv")

~略~

# t-SNEによる次元削減(正規化後のデータを使用) 安定化のためpcaを使用

# 100物件以上を想定しています。50物件以下なら、perplexityを2~5程度に調整してください。

tsne = TSNE(n_components=2, perplexity=10, init="pca", random_state=0)

~略~

# 類似性の高い20個のレコードを取得

closest_indices = np.argsort(distances.flatten())[:20]
```

3. プログラムの実行

コマンドラインからプログラムを実行します。

- 例) C:\example\srcにソースコードがある場合 cd C:\example\src python similar_search.py
- 入力画面に目標とする建物情報を入力し、 [検索] ボタンを押します。

∉ 目標データ入力			_	
	RC有無	□ RC有	軸振れ	
地上階数	SRC有無	□ SRC有	セットバック	
PH階数	S有無	□ S有	節点上下移動	
地下階数	CFT有無	CFT有	節点同一化	
Xスバン数 メスパン数	木有無	□ 木有	X方向ルート	なし
	基礎支持形式 ④ 直接基礎	○ 場所打5杭 ○ 既製杭	Y方向ルート	<u>なし</u> ―
		検索		

新しいウィンドウが現れ、目標に類似する物件データのサムネイルが複数表示されます。

類似度の高い物件ほどウィンドウの中央に表示されます。

サムネイルの中央付近をクリックすると、その物件を開いてSS7が起動します。

4. プログラム終了

サムネイルのウィンドウを閉じてプログラムを終了します。

『Op.Python実行』の設定手順

Ss7Pythonライブラリを使用するための設定手順です。

- 1. 『SS7』を起動し、[ツール 環境設定 Op.Python実行]画面を表示します。
- 2. "利用可能なPython言語のバージョン"を選択し、[デスクトップへコピー]ボタンをクリックします。
- 3. デスクトップにある「Python」フォルダごと、「src」フォルダにコピーします。

必要な外部ライブラリ

本プログラムは以下のPythonライブラリを使用します。

```
pip install numpy
pip install matplotlib
pip install pandas
pip install sklearn-pandas
pip install pillow
```

外部ライブラリのライセンスは「LICENSES/ライセンスについて.txt」を確認してください。

Copyright (C) 2025 UNION SYSTEM Inc.

ライセンス

本プログラムは MIT License に基づいています。「LICENSE」を確認してください。